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Problem chinchilla isoflops.

Using the provided data, we can find the minimum loss achieved at each compute
budget and extrapolate to the desired scale. We can predict:

• For compute budget 1e23, predicted parameters around 50B (5.00222576e+10).

• For compute budget 1e24, predicted parameters around 126B (1.26757796e+11).
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Figure 1: Optimal parameters. The log-log plot for our extrapolation is shown
on the right. On the left, the power law is plotted with linear y-axis to better
demonstrate the impact of higher compute budgets.

Using our fitted model, we can derive the optimal data amount. Data-parameter
relationship: C = 6ND, thus D = C/6N . We can predict:

• At budget 1e23, we need around 333B tokens (3.33185016e+11).

• At budget 1e24, we need around 1.3T tokens (1.31484352e+12).

Additionally, we can fit quadratic curves similar to IsoFLOPs [1] and use the
smallest points of the quadratics.
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Figure 2: Optimal tokens. The log-log plot for our extrapolation is shown on
the right. On the left, the power law is plotted with linear y-axis to better
demonstrate the impact of higher compute budgets.
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Figure 3: IsoFLOPs quadratic curves for the provided synthetic data.

Problem scaling laws.
Following works in the field of scaling LLM training such as [1] and [2], the
initial strategy to pursue is as follows:

• Certain aspect ratios of dmodel

nhead
and dmodel

nlayer
are quite robust to changes of

the specific values that produce the ratio. This allows us to fix these
ratios and only change one of the parameters to have lower degrees of
freedom when performing hyperparameter search. Then, we can use the
relationship N = 12 · nlayer · d2model to derive the total number of params

2



105 106 107

Params

4

5

6

7

8

9

10

Lo
ss

1e+14
3e+14
6e+14
1e+15
3e+15
6e+15
1e+16
3e+16
6e+16
1e+17

Figure 4: Aggregated isoFLOPs curves with my experiment logs: grid search +
varying dmodel for given ratios.

used for measurements.

• From the used literature initial guesses are dmodel

nhead
= 64 and dmodel

nlayer
= 64,

however, I also find that for smaller model sizes better ratios are 16 and
32.

• Smaller batch sizes are usually better because they allow us to perform
more gradient steps. The API allows batch sizes 128 and 256, so we
naturally go with 128. A few experiments were still performed with all
parameters set equal except for batch size and 128 performed best.

• Since a batch size of 128 is stil high enough to perform stable training, I
pick learning rate 1e-3 as my initial choice. Also, I follow the logic that a
good learning rate might be close to divergence and I observe that for all
my experiments divergence is probably with learning rates above 1e-3.

I decided to run a big sample of experiments for smaller flop budgets and make
educated guesses about how to update the layer and head aspect ratios as I in-
crease the flop budgets. The initial observation at sizes 1e13 to around 3e14 is
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that I get quite noisy losses which do not change predictably with increasing or
decreasing the model size. Also, perhaps at this scale, small enough model sizes
cannot be reached because the smallest combination of parameters is 2 layers
and dmodel 64, so the smallest model is 98k and we cannot observe meaningful
isoFLOPs-like results.

The next experiments will be performed on model sizes from 1e14 to 1e17 with
sweeps of hyperparameters with aspect ratios for layers and heads of 64, 32,
and 16. Additionally, I decided to run a grid search on the hyperparameters for
cheaper flop budgets: up to 3e15. The values for these sweeps are as follows:
dmodel=64, 96, 128, num layers=2, 4, 6, 8, 10, 12, 16, 20, 24.
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Figure 5: Parameter count projection. Fitted scaling law with best performing
models at each flops budget.

Using all the observations with fixed aspect ratios as well as grid search for
lower flop budgets, I aggregated the data and for my final projections used the
best achieved loss for each budget to fit a power law. Initially, when I did not
have enough data points, my projections were quite unstable and each new data
point changed the projected parameter count in the range from tens of millions
to tens of billions. Later, with more data points collected, my parameter pro-
jections were more stable – around 100 to 200 million parameters. I also used

4



the LLaMA 3 [3] paper as a reference, since it performed IsoFLOPs analysis at
various data/parameter sizes. I believe that my final projection of around 180
million non-embedding parameters agrees with the order of magnitude discussed
in the paper as well as other publications in recent days.

PREDICTED PARAMETERS:
The projected parameter count I can calculate from my scaling law is 182,413,449.
I observed that layer aspect ratios of 16 worked best for smaller models and 32
for bigger models. Aspect ratios of 64 and above gave poor results in my exper-
iments. Solving for d model with chosen ratios 32 and 32 for layers and heads,
I get 2 3

√
60804483 which I will approximate to 768 for divisibility purposes.

batch size: 128
d model: 768
num layers: d model / 32 = 24
num head: d model / 32 = 24
lr: 1e-3

PREDICTED LOSS: Fitting the same power law but for losses instead of pa-
rameter counts yields a predicted loss of 2.494.

I provide code for fitting scaling laws (prepared for Q1 but also used for Q2).
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Figure 6: Loss projection. Uses fitted scaling law with best performing models
at each flops budget. The fit looks very good but I believe we will see some
deviation to the right with higher compute budgets.
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