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Abstract

Serving many task-specialized LLM variants is often limited by the large size of1

fine-tuned checkpoints and the resulting cold-start latency. Since fine-tuned weights2

differ from their base model by relatively small structured residuals, a natural ap-3

proach is to represent them as compressed deltas. We propose a simple 1-bit delta4

scheme that stores only the sign of the weight difference together with lightweight5

per-axis (row/column) FP16 scaling factors, learned from a small calibration set.6

This design preserves the compactness of 1-bit deltas while more accurately cap-7

turing variation across weight dimensions, leading to improved reconstruction8

quality over scalar alternatives. From a systems perspective, a streamlined loader9

that transfers packed deltas in a single operation per module reduces cold-start10

latency and storage overhead, with artifacts several times smaller than a full FP1611

checkpoint. The method is drop-in, requires minimal calibration data, and main-12

tains inference efficiency by avoiding dense reconstruction. Our experimental13

setup and source code are available at https://anonymous.4open.science/14

r/Per-Axis-Weight-Deltas-for-Frequent-Model-Updates-0F1C/.15

1 Introduction16

Large foundation models continue to grow in size and computational demand, making both training17

and deployment increasingly resource-intensive [Kaplan et al., 2020]. Once pre-trained, these models18

are often adapted to downstream tasks through fine-tuning. Depending on the setting, fine-tuning19

may involve updating all parameters with a supervised objective (full fine-tuning), applying low-rank20

updates as in LoRA [Hu et al., 2021] or other parameter-efficient fine-tuning methods [Houlsby21

et al., 2019, Ben Zaken et al., 2022, Mahabadi et al., 2021, Dettmers et al., 2023, Zhang et al., 2023,22

Liu et al., 2024b, Kopiczko et al., 2024], or reinforcement learning post-training, which can target23

either entire weight matrices or restricted subsets of parameters [Han et al., 2024]. In cases where24

fine-tunes are represented as full weight updates, serving multiple variants remains a deployment25

challenge. Each fine-tuned checkpoint must be stored and loaded in its entirety, and switching26

between them requires keeping large weight tensors resident in GPU memory. This is particularly27

costly for inference providers that serve many users or domains simultaneously, and for continual28

adaptation settings where new model variants are introduced frequently [Sheng et al., 2024, Chen29

et al., 2023]. Yet weights of fine-tuned models are rarely far from their base counterparts. Across30

a variety of adaptation procedures, the resulting weight matrices tend to differ from the pre-trained31

model only by relatively small residuals, both in magnitude and in spectral structure [Liu et al.,32

2024a]. This suggests that storing a full checkpoint per fine-tune is wasteful: the information required33

to recover the specialized model lies in a compact delta relative to the shared base. Prior work34

has demonstrated that such deltas can be compressed aggressively while still enabling accurate35

reconstruction of the fine-tuned model at inference time [Liu et al., 2024a]. However, they rely on36

coarse parametrizations that ignore variation in residual scales across rows or columns of weight37

matrices, leading to reconstruction errors that could be avoided with more structured representations.38
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At the same time, introducing too much precision or auxiliary metadata risks negating the efficiency39

benefits.40

This paper introduces a 1-bit delta representation—storing only the binary sign mask of the weight41

difference B = sign(Wf −Wb) and learning lightweight per-row/column scales—designed to42

balance those trade-offs: maintaining the simplicity and low storage overhead of delta compression,43

while adding lightweight per-axis scaling to better capture the axis-specific patterns in model weights.44

We show that this approach improves approximation quality at negligible extra cost, enabling faster45

and more memory-efficient serving of many fine-tuned variants from a single shared base model.46

2 Method47

We propose a parameter-efficient method for storing a fine-tuned model by leveraging its shared48

architecture with a base model. The core idea is to represent the output of fine-tuned weights as a49

sum of the base weights and a compressed residual term.50

Let a model be composed of L layers. For layer i we have base and fine-tuned weights W (i)
b ,W

(i)
f ∈51

Rdout×din . We define ∆W(i) =Wf
(i) −Wb

(i) and the 1-bit sign mask B(i) = sign(∆W(i)) ∈52

{−1,+1}dout×din . After that we patch via a per-axis broadcasted scale53

Ŵi = v(i) ⊙B(i) +Wb
(i), v(i) ∈

{
R1×dout (row),
Rdin×1 (col),

where ⊙ replicates v(i) by columns (row mode) or rows (col mode); see Fig. 1.54

This approach achieves significant compression. The storage cost per layer is reduced from floating-55

point weights to a single bitmask and a single vector. This enables the efficient storage of multiple56

fine-tuned models specialized for different tasks, all of which share the same underlying base weights.57
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Figure 1: Approximating the fine-tuned weights Wf by v⊙B+Wb: a compact 1-bit sign residual,
where v is a vector, B ∈ {−1,+1} is the binary sign matrix, and Wb is the base weight matrix.

Prior evidence against weight reconstruction. The objective is not to recover the exact parameter58

values, but to preserve the function the network computes - i.e., to match outputs under realistic59

inputs. A line of works shows that minimizing weight-space error (e.g., round-to-nearest) is a weak60

surrogate for preserving model behavior: (i) Nagel et al. [2020] demonstrate that round-to-nearest is61

suboptimal and introduce loss-aware adaptive rounding that consistently outperforms weight-nearest62

at low bit widths; (ii) Frantar et al. [2023] explicitly minimize layer-output error (Hessian-aware) and63

report large gains over RTN on LLMs at 3–4 bits; (iii) Li et al. [2021] formulate block reconstruction64

of activations with a second-order analysis, enabling PTQ at 2 bits; (iv) Lin et al. [2024] argue65

that salient channels should be selected via activation statistics rather than weights; (v) Xiao et al.66

[2023] argue that while weights are relatively straightforward to quantize compared to activations,67

the difficulty can be mitigated by rescaling weights to absorb part of the activation complexity.68
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Calibration cache, training, and stacking. For each target layer i, the vector v(i) is trainable69

while Wb
(i) and B(i) are frozen at inference. We extract a small calibration set of 50 C4 [Raffel70

et al., 2023] samples and build a per-layer cache of (X,Y) pairs: X is the input that has to be passed71

to the i layer of the compressed model (i.e., the output of the already-compressed stack up to layer72

i−1, immediately before entering layer i), and Y is the fine-tuned outputs of the original none73

compressed finetuned layer, while Ŷ denotes the output produced by compressed layer. We attach74

forward hooks to the teacher to collect Y and to the student to collect X, store both as BF16 tensors.75

For each target layer i we instantiate both axis variants and fit only their scale vectors on the cache76

with an MSE objective,77

Llayer =
1
n

∥∥Y − Ŷ
∥∥2
2
,

using AdamW for 5 epochs under the same budget across variants. The axis is selected by validation78

MSE on the held-out shard, and the original layer is replaced with the better variant. We sweep all79

linear projections in attention and MLP blocks and install the selected module per layer, yielding a80

compressed student stacked on top of the shared base.81

Implementation remarks. We run on Llama-3.1-8B, using Llama-3.1-8B-Instruct as the teacher82

and Llama-3.1-8B as the student. Due to limited VRAM, we used two RTX 4090 GPUs and split fine-83

tuned weights and compressed weights across devices. We cache teacher layer outputs (fine-tuned,84

cuda:0) and student inputs (compressed, cuda:1) via forward hooks as detached BF16 clones stored85

on cuda:1. Masks B(i) stay packed end-to-end (1 bit along input axis), vectors v(i) are FP16, and86

base weights are kept as (in, out) BF16. We use non-blocking transfers and a single .to(device)87

per module. The full algorithm can be seen in 4.88

3 Experiments89

3.1 Setup90

We adopt a simple evaluation setting: Llama-3.1-8B as the base model and Llama-3.1-8B-Instruct91

as the fine-tuned target, evaluated zero-shot on ARC-Challenge, ARC-Easy [Clark et al., 2018],92

HellaSwag [Zellers et al., 2019], PIQA [Bisk et al., 2019], and Winogrande [Sakaguchi et al., 2019].93

Unless noted otherwise, all methods use the same calibration budget of 150 samples drawn from C494

[Raffel et al., 2023].95

For our vector scales we use AdamW, learning rate 1× 10−5, for five epochs; BitDelta (scalar)96

uses the same pipeline but with a single scalar per matrix and one epoch for training. Unless stated97

otherwise, we report zero-shot accuracy (%) on the public test splits using the same prompt formatting98

across methods.99

For additional descriptive analysis of the selected delta-quantization axis, see Appendix A; per-sub-100

type counts and layer-wise trends are shown in Figure 2.101

Models and baselines. Baseline denotes the fine-tuned model without any delta compression.102

BitDelta (scalar) is the 1-bit sign mask with a single learned scalar per matrix. Our method is with a103

1-bit sign mask and a learned per-row or per-column vector of scales.104

3.2 Main results105

Table 1 summarizes zero-shot accuracy on ARC-Challenge, ARC-Easy, HellaSwag, PIQA, and106

Winogrande—using Llama-3.1-8B as the base and Llama-3.1-8B-Instruct as the fine-tuned target.107

Vector (row/col) improves the average score over the baseline by 0.97 points and over BitDelta108

(scalar) by 0.28 points. Gains are consistent on ARC-Challenge/Easy and Winogrande; HellaSwag is109

on par, while PIQA shows a small drop versus BitDelta. See Appendix A for a breakdown by module110

sub-type (Figure 2)111

Storage and load-time. Our delta representation stores the fine-tuned model as a compact ∼3GB112

artifact on disk for the 8B setting (Table 2)—about 5.4× smaller than a full FP16 checkpoint. Under113

identical allocator/seeds and cold-start conditions on LLAMA-3.1-8B, the average load time over 10114

runs to apply the vector–delta on top of the base is 0.80 s, whereas loading the entire fine-tuned FP16115
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Table 1: Zero-shot accuracy (%) after calibrating on 150 samples from C4. Vector scales are trained
for five epochs with learning rate 1e−5; BitDelta uses the same setup with a single scalar per matrix.

Model ARC-C ARC-E HellaSwag PIQA Winogrande Avg

Baseline 51.70 81.81 59.06 79.86 73.87 69.26
BitDelta (scalar) 52.55 82.32 59.73 81.22 73.95 69.95
Vector (row/col) 53.58 82.99 59.78 80.63 74.19 70.23

Table 2: Checkpoint sizes: A full 8B FP16 checkpoint is 14.9 GiB so both deltas are 5.4× smaller.

Artifact Size (MB) Size (MiB) vs. FP16 8B weights

Scalar 2974 2836 ≈ 5.25× smaller
Vector 2980 2842 ≈ 5.24× smaller

checkpoint takes 2.08 s. Thus the delta path uses less per-model load time for a much smaller on-disk116

and transfer footprint per-model. This is especially useful when maintaining or hot-swapping many117

fine-tuned versions of a given base model.118

4 Limitations119

When a scalar suffices Our gains rely on the anisotropy of the task-induced deltas ∆W across120

rows/columns. If a layer’s delta is nearly isotropic, a single global scale can match quality while121

avoiding the metadata and compute introduced by per-row/column vectors.122

Fixed 1-bit signs (no sparsity) We fix B∈{−1,+1}din×dout at 1 bit per entry. This forbids explicit123

zeros/sparsity and can propagate noise for very small-magnitude entries unless one adds debiasing or124

confidence filtering. Consequently, the patch is dense and incurs slight additional MACs (extra steps)125

and memory overhead compared to a pure binary (sign-only) matrix.126

Calibration dependence Vector scales are learned with an activation-aware objective using a small127

calibration set to estimate Cx. Distribution shift between calibration and deployment may reduce128

effectiveness; larger or stratified calibration improves robustness but increases preparation time and129

memory.130

Layer coverage We patch linear projections (attention and MLP). We do not modify normalizations,131

some biases, or tied embeddings; if task-specific changes concentrate there, our method may yield132

limited benefits.133

No mask learning The sign mask B is fixed and we do not learn signs or structure. At aggressive134

bit budgets, learning B may be beneficial for downstream performance.135

5 Conclusion136

We introduced a 1-bit delta scheme with lightweight per-axis (row/column) FP16 scales learned137

via output matching. Empirically, across five zero-shot benchmarks, the method attains an average138

accuracy of 70.23 vs. 69.95 for a scalar 1-bit delta and 69.26 for the uncompressed baseline. Limita-139

tions include layers with near-isotropic deltas and reliance on small calibration sets. Future work140

includes blockwise per-group scaling, learning the sign structure, INT4/FP8 co-design, and broader141

multi-tenant evaluations.142

Our method delivers higher average accuracy than both the baseline and the scalar BitDelta while143

preserving the same storage efficiency. From a systems perspective, our loader reduces cold-start144

latency. Overall, vector scales provide a better match to the anisotropy of task deltas at negligible145

extra storage cost.146
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Figure 2: counts of row vs. column delta-quantization per sub_type (row in blue, column in red).

Algorithm 1 Register and use forward hooks to build calibration caches for a layer L

Require: Teacher model Wf on cuda:0, student Ŵ on cuda:1, target layer name L, train loader
Dtr, val loader Dval, train steps T , eval steps E

Ensure: Caches (Xtr, Ytr) and (Xval, Yval) on cuda:1
1: Initialize empty maps INPUTS[L], OUTPUTS[L] ▷ device=cuda:1, dtype=BF16
2: hout ← register forward hook on Wf [L] that appends detached BF16 output to OUTPUTS[L] on

cuda:1
3: hin ← register forward hook on Ŵ [L] that appends detached BF16 input to INPUTS[L] on

cuda:1
4: for t = 1 to T do ▷ build train cache
5: Fetch batch b← Dtr

6: Run Wf on b (moved to cuda:0, no grad) ▷ fills OUTPUTS[L]

7: Run Ŵ on b (moved to cuda:1, no grad) ▷ fills INPUTS[L]
8: end for
9: for e = 1 to E do ▷ build val cache

10: Repeat the two forwards with Dval

11: end for
12: Remove hooks hout, hin
13: Xtr, Ytr ← first T items of INPUTS[L], OUTPUTS[L]
14: Xval, Yval ← last E items of INPUTS[L], OUTPUTS[L]
15: return (Xtr, Ytr), (Xval, Yval)

Algorithm 2 Train per-row/column scaling vectors via activation matching
Require: Compressed layer M (ROW or COL) with learnable α, train cache (Xtr, Ytr), val cache

(Xval, Yval), epochs K, learning rate η
Ensure: Trained α and validation loss Lval

1: Initialize AdamW on α only with LR η; optional cosine scheduler over K epochs
2: for k = 1 to K do
3: Train: For each minibatch (x, y) ∈ (Xtr, Ytr):
4: ypred ←M(RESHAPEFORLAYER(x)) ▷ reshape to layer input shape if needed
5: L← ∥ypred − y∥22; backprop only through α; optimizer step; scheduler step
6: end for
7: Validate: Lval ← mean of ∥M(RESHAPEFORLAYER(x))− y∥22 over (Xval, Yval) (no grad)
8: return (α,Lval)
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Algorithm 3 End-to-end validation loss (student vs. cached teacher logits)

Require: Student model Ŵ on cuda:1, val loader Dval, cached teacher logits {ℓ∗t } aligned by batch
Ensure: Scalar validation loss Lend

1: Lend ← 0, n← 0
2: for first N batches b in Dval do
3: Move b to cuda:1, run Ŵ under AMP to get logits ℓ
4: Lend ← Lend + ∥ℓ− ℓ∗b∥22; n← n+ 1
5: end for
6: return Lend/n

Algorithm 4 Per-layer compression with Row/Col selection by end loss

Require: Base weight W (L)
b , fine-tuned W

(L)
f , layer name L, loaders Dtr,Dval

Ensure: Replace layer L with the better of ROW/COL

1: ∆W ←W
(L)
f −W

(L)
b ; B ← PACK(sign(∆W )⊤)

2: (Xtr, Ytr), (Xval, Yval)← Alg. 1 for L
3: Build Col module Mcol(B,αc) with αc ← mean(|∆W |, axis = 1); train via Alg. 2 with LR

1×10−4, epochs 5
4: Ecol ← Alg. 3 on Ŵ after swapping in Mcol
5: Build Row module Mrow(B,αr) with αr ← mean(|∆W |, axis = 0); train via Alg. 2 with LR

1×10−5, epochs 5
6: Erow ← Alg. 3 on Ŵ after swapping in Mrow
7: if Erow ≤ Ecol then
8: REPLACELAYER(L←Mrow)
9: else

10: REPLACELAYER(L←Mcol)
11: end if

Algorithm 5 Model-wide application from a saved delta file (row/col-aware)

Require: Student model Ŵ , delta dict diff (keys: .mask_row, .coeff_row, .mask_col,
.coeff_col)

1: for all modules (name,mod) in Ŵ where NameContains(name, {mlp, self_attn}) and
NameContains(subname, {proj}) do

2: if diff has name+.mask_row then
3: COMPRESSLAYERROW(name, diff)
4: else if diff has name+.mask_col then
5: COMPRESSLAYERCOL(name, diff)
6: end if
7: end for
8: Optionally compute Lend via Alg. 3
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